

Simphony-remote

[image: Documentation Status]
 [https://simphony-remote.readthedocs.io/en/latest/?badge=latest]The Simphony-remote is web service that allows users to start and work with simphony enabled environments remotely.

Key provided features:

	Isolated working environments using docker containers.

	No install remote access through a web browser.

	Sharing of working sessions.

	Based on community supported open source initiatives (JupyterHub)

Acknowledgments

This software is developed under the SimPhoNy project, an EU-project
funded by the 7th Framework Programme (Project number 604005) under
the call NMP.2013.1.4-1: “Development of an integrated multi-scale
modelling environment for nanomaterials and systems by design”.

Documentation

A quick setup guide is given below; please see the documentation for more
detailed information.

Deployment (Quick Start)

Basic instructions for a single-user deployment on a local (or virtual) machine are provided below.
A more comprehensive deployment documentation, including use of a nginx reverse proxy and
running as a service can be found here

Single Machine

If you would like to test a deployment of S-R using Docker for CI purposes, then please use the following
instructions.

Note

The following instructions assume a clean up-to-date Ubuntu 18.04 or CentOS 7
system with git and make installed.

	Retrieve the required repository:

git clone https://github.com/simphony/simphony-remote.git

	Make sure that you have a recent version of Docker. This guide has been tested on version 19.03.5 (build 633a0ea838).
make deps will install the latest version if you do not already have a version of docker available.
Full instructions available at the Docker website for Ubuntu [https://docs.docker.com/engine/install/ubuntu/]
and for CentOS [https://docs.docker.com/engine/install/centos/] operating systems.
Docker installed using Ubuntu’s Snap package manager might not work as expected; see
https://github.com/simphony/simphony-remote/issues/572 for details.
A Makefile rule is provided for convenience.
NOTE: this overwrites the docker.list file you might have setup in your /etc/apt/sources.d/ directory.
You might be prompted for the root password to execute this:

make deps

	Make sure your docker server is running, and your user is allowed to connect to
the docker server (check accessibility of /var/run/docker.sock). You obtain this by
running:

sudo service docker start

followed by either:

(Ubuntu) sudo addgroup your_username docker
(CentOS) sudo groupmod -aG docker your_username

and logging out and in again. Check if your docker server is operative by running:

docker info

	Create and activate a virtual environment, then set the appropriate PATH for the node modules:

make venv
. venv/bin/activate
export PATH=`npm bin`:$PATH

	Install the python dependencies:

make pythondeps

	And install the package itself:

make install

	Generate the SSL certificates if you do not already have them. The
resulting certificates will have names test.* because they are
self-signed and are not supposed to be used for production.
A CA-signed certificate should be obtained instead.
The certificates will be created in the jupyterhub directory:

make certs

	Create the database. By default, this is a sqlite file:

make db

	If you are using virtual users (users that are not present on the system) you need to create
a temporary space where the virtual user homes are created:

mkdir /tmp/remoteapp

The installation is complete, you can now start the service.

Start JupyterHub

	Change dir into jupyterhub/:

cd ./jupyterhub

	Verify that jupyterhub_config.py is correct for your deployment
machine setup (see configuration for more details).
Some example configuration files are provided in the
example_configurations/ directory.

	Start JupyterHub by invoking the start script:

bash start.sh

Note

If you want to keep the application running, use screen to start
a detachable terminal.

Note

Running on OSX or with a separate docker machine requires that the
appropriate environment variables are set before starting jupyterhub.
refer to the command docker-machine env to setup the appropriate
environment. In general, invoking:

eval `docker-machine env`

will enable the appropriate environment.
On Linux, by default the host machine and the docker machine coincide,
so this step is not needed.

	JupyterHub is now running at https://127.0.0.1:8000

For many browsers this must be typed exactly as shown - using http://127.0.0.1:8000 or localhost:8000
will not work. As mentioned above, the self-signed SSL certificates should cause your browser to
raise a warning and require adding 127.0.0.1 to the list of security exceptions.

Currently, the only fully supported browser is Google Chrome/Chromium. The latest version of Firefox has shown
some issues with keyboard input when the vnc is running, however for the most part users will likley not
suffer any issues.

Setting up Docker images

Next, we need to obtain a docker image to run on Simphony-Remote. This can be done by either pulling an existing
image from a docker registry, or creating our own locally.

To create new images, please follow the documentation hosted at Horizon 2020
Simphony [https://github.com/simphony/simphony-remote-docker] project repository.

Setup Database Accounting

A database is needed for managing the remote applications available for each user.
Note that this database is in addition to the database created or used by JupyterHub.

Default sqlite database

remoteappmanager by default uses a sqlite database remoteappmanager.db in
the current work directory. The remoteappdb command-line tool is provided
for setting up the database. Please refer to the utilities
section for details on the use of this program.

Setting up Users

Whilst Simphony-Remote is running using the standard jupyter_config.py script,
navigate to https://127.0.0.1:8000 in your browser and login with the username ‘admin’ and no password. Select the
‘Users’ tab on the left hand menu and click the ‘Create New Entry’ button in the top right. Make up a username and
click submit.

Next, click the Applications tab in the left hand menu and click the ‘Create New Entry’ button in the top right.
We can add the name of any docker image available to the Docker daemon.

Then go back to the ‘Users’ tab, select the ‘Policies’ button next to the username. Create a new entry and choose
the added image name from the dropdown menu. Nothing else needs to be set, unless you want to mount a directory
within the docker container.

Log out of SimphonyRemote (red ‘admin’ button in the top right) and log in using the username you specified for your
new user and no password, you should now be able to start your application!

Contents

This documentation is for simphony-remote 2.2 (2.2.0)

	Deployment

	Using Nginx Reverse Proxy

	Running as a Service

	Configuration

	Administration

	Utilities

	Design

	Developer documentation

	Docker CI for SimPhoNy-Remote

	Troubleshoot

License

Copyright (c) 2016, SimPhoNy Consortium
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the SimPhoNy Consortium nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE SIMPHONY CONSORTIUM BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Deployment

Single Machine

Deployment of the complete system in a single machine/VM.

Note

The following instructions assume a clean up-to-date Ubuntu 18.04 or CentOS 7
system with git and make installed.

	Retrieve the required repository:

git clone https://github.com/simphony/simphony-remote.git

	Make sure that you have a recent version of Docker. This guide has been tested on version 19.03.5 (build 633a0ea838).
make deps will install the latest version if you do not already have a version of docker available.
Full instructions available at the Docker website [https://docs.docker.com/engine/installation/linux/ubuntulinux/].
A Makefile rule is provided for convenience.
NOTE: this overwrites the docker.list file you might have setup in your /etc/apt/sources.d/ directory.
You might be prompted for the root password to execute this:

make deps

	Make sure your docker server is running, and your user is allowed to connect to
the docker server (check accessibility of /var/run/docker.sock). You obtain this by
running:

sudo service docker start
sudo addgroup your_username docker

and logging out and in again. Check if your docker server is operative by running:

docker info

	Create and activate a virtual environment, then set the appropriate PATH for the node modules:

make venv
. venv/bin/activate
export PATH=`npm bin`:$PATH

	Install the python dependencies:

make pythondeps

	And install the package itself:

make install

	Generate the SSL certificates if you do not already have them. The
resulting certificates will have names test.* because they are
self-signed and are not supposed to be used for production.
A CA-signed certificate should be obtained instead.
The certificates will be created in the jupyterhub directory:

make certs

	Create the database. By default, this is a sqlite file:

make db

	Change dir into jupyterhub:

cd ./jupyterhub

and verify that jupyterhub_config.py is correct for your deployment
machine setup (see Configuration).

	If you are using virtual users (users that are not present on the system) you need to create
a temporary space where the virtual user homes are created:

mkdir /tmp/remoteapp

	You can now start the service:

 bash start.sh

.. note::
 If you want to keep the application running, use screen to start
 a detachable terminal.

Note

Running on OSX or with a separate docker machine requires that the
appropriate environment variables are set before starting jupyterhub.
refer to the command docker-machine env to setup the appropriate
environment. In general, invoking:

eval `docker-machine env`

will enable the appropriate environment.
On Linux, by default the host machine and the docker machine coincide,
so this step is not needed.

Currently, the only fully supported browser is Google Chrome/Chromium. The latest version of Firefox has shown
some issues with keyboard input when the vnc is running, however for the most part users will likley not
suffer any issues.

	Visit the site at:

https://127.0.0.1:8000

For many browsers this must be typed exactly as shown - using http://127.0.0.1:8000 or localhost:8000
will not work. As mentioned above, the self-signed SSL certificates should cause your browser to
raise a warning and require adding 127.0.0.1 to the list of security exceptions.

Setup docker containers

To create new images, please follow the documentation hosted at Horizon 2020
Simphony [https://github.com/simphony/simphony-remote-docker] project repository.

Setup Database Accounting

A database is needed for managing the remote applications available for each user.
Note that this database is in addition to the database created or used by JupyterHub.

Various accounting sources are supported:

	Default sqlite database

remoteappmanager by default uses a sqlite database remoteappmanager.db in
the current work directory. The remoteappdb command-line tool is provided
for setting up the database. Please refer to the Utilities
section for details on the use of this program.

	Other DBAPI [https://www.python.org/dev/peps/pep-0249/] implementations and databases

For database implementation supported by SQLAlchemy [http://docs.sqlalchemy.org/en/latest/index.html], you may configure
remoteappmanager to use remoteappmanager.db.orm.AppAccounting.
Please also refer to Configure the remoteappmanager for details on setting
up the accounting class.

Note

The use of databases other than sqlite3 is not tested

	CSV file

You may configurate remoteappmanager to use a CSV file as its database.
Please refer to Configure the remoteappmanager for details on setting up
the accounting class to use remoteappmanager.db.csv_db.CSVAccounting.

	Others

Any arbitrary database implementation may be used as long as an accounting
class compliant to the API of remoteappmanager.db.interfaces.ABCAccounting
is provided. Please also refer to Configure the remoteappmanager for details
on setting up the accounting class.

Start JupyterHub

	Start jupyterhub by invoking the start script:

sh start.sh

Note

If you want to keep the application running, use screen to start
a detachable terminal.

Note

Running on OSX or with a separate docker machine requires that the
appropriate environment variables are set before starting jupyterhub.
refer to the command docker-machine env to setup the appropriate
environment. In general, invoking:

eval `docker-machine env`

will enable the appropriate environment.
On Linux, by default the host machine and the docker machine coincide,
so this step is not needed.

	JupyterHub is now running at https://localhost:8000

Using Nginx Reverse Proxy

Although the SimPhoNy-Remote installation will include nginx, it is up to the developer to make sure that it is
running correctly, with http and https firewall access also set up.

To begin with, please first ensure that the following directories exist in your file system (you will need root
privileges in order to do so):

/etc/ssl/certs/
/etc/ssl/private/
/etc/nginx/conf.d/

If you want to use self-signed certificates, you can run the following make command in order to generate a more
secure set of RSA certificates and Diffie-Helman parameters for the Nginx reverse proxy:

make certs CERT_TYPE='nginx'
sudo mv nginx/certs/nginx-selfsigned.key /etc/ssl/private/
sudo mv nginx/certs/nginx-selfsigned.crt /etc/ssl/certs/
sudo mv nginx/certs/dhparam.pem /etc/ssl/certs/

Then edit the nginx/nginx.conf.template file provided will in order to include a public IP address / server name
in the sections marked <external server name>. If you prefer to use authenticated certificates this is also the
time to edit the ssl_certificate and ssl_certificate_key sections with the updated locations of these files.

The Nginx template file will need to be copied into the following location (and given the .conf extension) in
order to be discoverable by the nginx proxy:

sudo cp nginx/nginx.conf.template /etc/nginx/conf.d/sr-nginx.conf

After restarting the nginx service to make sure the new configuration is applied, run SimPhoNy-Remote as normal
and it will be discoverable at https://<external_server_name>

Running as a Service

Instructions for how to run a general JupyterHub deployment as a service can be found
here [https://github.com/jupyterhub/jupyterhub/wiki/Run-jupyterhub-as-a-system-service].

Instead of executing a jupyterhub <config.py> <flags> command upon starting the service, it is
more advisable to call bash <simphony-remote>/jupterhub/start.sh instead.

Configuration

Configure the spawner

The jupyterhub configuration is documented in the jupyterhub documentation [https://jupyterhub.readthedocs.io/en/latest/getting-started.html]. The
important difference is the spawner to use, which is configured as:

c.JupyterHub.spawner_class = 'remoteappmanager.jupyterhub.spawners.SystemUserSpawner'
or
c.JupyterHub.spawner_class = 'remoteappmanager.jupyterhub.spawners.VirtualUserSpawner'

in the jupyterhub_config.py file.

Please refer to remoteappmanager.jupyterhub.spawners for the available spawners
in this project.

Configure the authenticator and the admin user

Different authenticators can be plugged into jupyterhub. In the configuration
file, the following entry will change the authenticator:

c.JupyterHub.authenticator_class = ('remoteappmanager.jupyterhub.auth.WorldAuthenticator')

WorldAuthenticator will allow any user to pass authentication. Use this
authenticator only for testing purposes.

Administration capabilities are decided by jupyterhub, not remoteappmanager.
jupyterhub_config.py allows to setup admin users with the following entry:

c.Authenticator.admin_users = {"admin"}

Note that the entry must be a python set. Users in this set will, once logged
in, be able to launch an administrative interface in addition to the standard
docker application management.

Configure the remoteappmanager

Configuration of the remote application is performed from two sources.

	the command line, specified by the Spawner.

	a config file. The location of this file is specified as part of the
command line options.

Their options are fully disjoint, and they configure different aspects
of the application: Command line options are dynamically decided according to
the user that requests the spawn; Config file options are general in nature,
and allow the remoteappmanager to perform adequately against the current
docker setup.

	Command line options

--base_urlpath The base url where the server resides
--config_file The path of the configuration file
--cookie_name The cookie name for authentication
--hub_prefix The url prefix of the jupyterhub
--ip The IP address to bind
--login_service The name of the JupyterHub Authenticator class
--logout_url The logout url of the jupyterhub
--port Port at which to spawn
--proxy_api_url The url of the reverse proxy API
--user The user as specified at the jupyterhub login

When remoteappmanager is started from jupyterhub using the spawner,
all the command line options are filled in automatically.

	Config file

The remoteappmanager has a number of parameters configurable via a
config file. The path of the config file should be specified in the
spawner in jupyterhub_config.py:

c.SystemUserSpawner.config_file_path = "/path/to/config.py"

Please refer to remoteappmanager.file_config.FileConfig for
the configurable parameters. Note that this config file will be used
by all remoteappmanagers for any user.

For example, to use CSV as the database, /path/to/config.py would
contain the followings:

database_class = 'remoteappmanager.db.csv_db.CSVDatabase'
database_kwargs = {'url': '/path/to/csv_file'}

Administration

As specified in the configuration section, the authenticator will grant additional
administrative rights to users in the specified set.

Once logged in, an administrative user will have the option to spawn an “Admin” session,
providing them with a different application, where they can add or remove users,
applications, and authorize users to run specific applications. It is also possible to stop
currently running containers

NOTE: the existing “Admin” or “User” session must be shut down before the options form
will be shown again. This is a JupyterHub-level operation and is not performed by default
upon logging out. Typically it must be manually carried out by either navigating to
https://<simphony-remote>/hub/admin or https://<simphony-remote>/hub/home whilst logged
in and selecting the appropriate the “Stop My Sever” option. For convenience we provide a custom
logout handler that automatically shuts down sessions upon an administrator sign out. This can be
used with any jupyterhub.auth.Authenticator subclass via inheriting the
remoteappmanager.jupyterhub.auth.SimphonyRemoteAuthMixin mixin.

It is important to note that the administrative interface works only with
accounting backends supporting addition and removal. More specifically, it
does not support the CSV backend. Read operations are supported, but write
operations will be denied.

Utilities

Simphony remote comes with two utility scripts:

	remoteappdb: Allows to add new applications, create new users, and
specify permissions between users and applications in a database from
the command line. It is targeted at system administrators.

	remoteapprest: Allows to start, stop, inquire running containers
from the command line.

Remoteappdb

Note: As of version 0.9.0 the management functionality of this utility is
also covered by the administrative web interface.

The script is aimed at system administrators using the database (by default,
a sqlite database) to perform accounting of users and applications.

The database must be first initialized with the init command:

remoteappdb ~/remoteappmanager.db init

Once initialized, the database content is ready to be configured.
New applications are registered with app create. The image name
must match the image name in docker:

remoteappdb ~/remoteappmanager.db app create myimage

The option –verify can be used to validate the image name against
docker.

You can also create users with the user create command:

remoteappdb ~/remoteappmanager.db user create myuser

An application will not be visible not can be started by a user
until permission is granted. To grant permission, use the app grant
command:

remoteappdb ~/remoteappmanager.db app create myimage myuser

By default, this command will grant no special options. It is however
possible to specify a different running policy, like for example mounting
a common home directory, with the following options:

--allow-home Enable mounting of home directory
--allow-view Enable third-party visibility of the running container.
--volume TEXT Application data volume, format=SOURCE:TARGET:MODE, where
 mode is 'ro' or 'rw'.

Note that you can grant access to the same application with multiple, different
policies. Each application and policy will appear as a separate option in the
user choice of runnable applications.

The script provides additional functionality to inquire the current state
of the database, such as listing the current users, applications, revoke
permissions, remove applications and so on.

Remoteapprest

This script is experimental and exploits the REST API provided by the server to
allow inquiring, starting, and stopping containers from the command line.

Before using the CLI, you need to authenticate against the jupyterhub server
with the login command:

remoteapprest login http://jupyterhubserver.example/

You will be inquired about username and password. Once sucessfully logged in,
your credentials will be stored in a file .remoteapprest in your home directory.
Note that your password will not be saved, only an authentication token.

Once logged in, you can inquire about the available applications by issuing:

remoteapprest app available

Note that you don’t need to specify the endpoint. This command will show you a list
of the available applications, preceded by a unique identifier:

6dbe8e166c94b0b4b36a2d961586acc0: myapplication

This identifier can be used to start a new container, using the following command:

remoteapprest app start 6dbe8e166c94b0b4b36a2d961586acc0

The application will run, and can be seen with:

remoteapprest app running

83c18fcd833595a571d556a5e6c253f8: myapplication

Which will show a different identifier for this running instance.
Finally, the application can be stopped using the stop command:

remoteapprest app stop 83c18fcd833595a571d556a5e6c253f8

Design

Simphony remote is derived from the Jupyterhub design with a custom single user
application that manages the available docker images for each user (Fig 1).

Components

[image: _images/components.png]

Figure. 1: Component diagram a basic remote app server based on the Jupyter hub
infrastructure.

	Reverse proxy: Proxy: the public facing part of the server
that uses a dynamic proxy to route HTTP requests to the Hub and
Single User Servers.

	Jupyter Hub: manages user accounts and authentication and
coordinates Single Users Servers using a Spawner.

	Single user manager: A web server to manage the images and the
active sessions. There is one such server for each authenticated user.

	Docker: The docker engine managing the docker containers.

Note

Docker containers are connected via HTTP. HTTPS encryption
is only provided by the proxy.

Usecases

[image: _images/usecases.png]

Figure 2: Basic usecases

A Scientist should be able to:

	Login

	Inspect the available docker images

	Start a new session

	Stop a running session

	Share a session with another user

Furthermore an Administrator should be able to:

	Build compatible docker images

	Upload docker images.

The above design as of version 0.1 supports the usecases (see example in Fig 3):

[image: _images/base_workflow.png]

Figure 3: Sequence diagram of an authorised user starting a remote session.

Developer documentation

RemoteAppManager

The main tornado web application that manages the containers (docker applications)
for each user.

Docker image specifications

Docker images compliant to the simphony-remote application define a protocol
through docker LABEL and environment variables.

Labels

Labels are defined with the prefix namespace:

eu.simphony-project.docker

The following labels are currently defined.
Their definition can be found in remoteappmanager.docker.docker_labels

	ui_name: the UI visible name of the image

	icon_128: a base64 encoded png image that will result as an icon

	description: a user-readable description of the image

	type: a string identifying the type of the container, depending on
the original base image (vncapp or webapp)

	env: subnamespace for accepted environment variables. See below.

The env is a subnamespace defining the environment variables the image internals
can understand. This does not mean that they are the only ones that will be
passed to the image.

The naming strategy works around the docker label restrictions [https://docs.docker.com/engine/userguide/labels-custom-metadata/#/label-keys-namespaces]
of having kebab case [http://c2.com/cgi/wiki?KebabCase] vs envvars that are
traditionally MACRO_CASE. Additionally, it allows new variables to be added
by layers without having to know the variables understood by the base layer.

The strategy is as follows: the name after the env will be converted to uppercase
and dashes converted to underscores. For example:

env.x11-width -> container accepts and understands envvar X11_WIDTH

the value of the label is currently unused, and should be left empty.

If your application uses variables with a different convention, or uses double underscores,
you will have to define an auxilliary variable and transfer the value in the image
startup scripts.

Currently reserved env keys:

	x11-width: for the VNC images, the X11 width

	x11-height: for the VNC images, the X11 height

	x11-depth: for the VNC images, the X11 depth (currently unused, fixed at 16)

	startupdata: this variable can be set to a file that will be loaded by an application
upon startup

Container Labels

When a container is started, the following labels will be added:

	url_id: unique identifier that ends up in the URL when the
user is redirected

	mapping_id: a unique key identifying the combination of image
and policy used to start the container.

	user: the user that started the container

Environment variables

The following environment variables are passed at container startup:

	JPY_USER: the username used to login to the Jupyterhub frontend.
Can be an email address, or anything else your authenticator accepts.

	JPY_BASE_USER_URL: The base URL _path_ where the user has its service.

	USER: A unix-likable username to create the container user.

	URL_ID: a unique key assigned to the container that will end up in
the user-exposed URL to reach the container.

If the image accepts additional envvars (through the env labels mechanism outlined above)
these variables will be passed through the configurables mechanism: special variables
are recognized and exposed to the user as a configurable UI, then passed to the container
at startup. See the reserved env labels for details.

Docker CI for SimPhoNy-Remote

This module contains Docker files that can be used to test installations
for various platforms.

Please ensure that you are building from a clean repository, since all contents will be copied into the Docker
image and may affect the build. For example, if a venv is already present then this will prevent the
Python virtual environment inside the container from being set up correctly.

However, running S-R as a Docker container image is NOT fully supported for deployment, since image applications
will not be able to be run.

Building SimPhoNy-Remote as a Docker Image

It is also possible to build SimPhoNy-Remote as a Docker container image using a Dockerfile script
provided for either ubuntu or centos Linux OS:

docker build . --file Dockerfile-<linux os> -t simphony-remote

Alternatively, you can provide the following docker-compose command:

docker-compose build simphony-remote-<linux os>

Running SimPhoNy-Remote as a Docker Image

When running, S-R needs to be given a reference to the Docker daemon that contains the applications
(also Docker container images) required by the Hub session. Running Docker inside Docker is not recommended,
but there are a couple of approaches that can be used as a work around, such as
sharing volumes [https://docs.docker.com/storage/volumes] or performing a
bind mount [https://docs.docker.com/storage/bind-mounts].

We have successfully ran a S-R session using a Docker container image by sharing volumes with the following command:

docker run -it -v /var/run/docker.sock:/var/run/docker.sock -p 8000:8000 simphony-remote-<linux os> bash

This will allow a jupyterhub session with user login / management services to be initiated as normal. However, as
stated previously, any S-R applications will not be able to run.

API reference

System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/simphony-remote/checkouts/stable/doc/source/developer.rst, line 17)

failed to import remoteappmanager.application

System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/simphony-remote/checkouts/stable/doc/source/developer.rst, line 17)

failed to import remoteappmanager.webapi.application

System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/simphony-remote/checkouts/stable/doc/source/developer.rst, line 17)

failed to import remoteappmanager.webapi.container

System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/simphony-remote/checkouts/stable/doc/source/developer.rst, line 17)

failed to import remoteappmanager.webapi.admin.application

System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/simphony-remote/checkouts/stable/doc/source/developer.rst, line 17)

failed to import remoteappmanager.webapi.admin.container

System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/simphony-remote/checkouts/stable/doc/source/developer.rst, line 17)

toctree references unknown document ‘api/remoteappmanager.application’

System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/simphony-remote/checkouts/stable/doc/source/developer.rst, line 17)

toctree references unknown document ‘api/remoteappmanager.webapi.application’

System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/simphony-remote/checkouts/stable/doc/source/developer.rst, line 17)

toctree references unknown document ‘api/remoteappmanager.webapi.container’

System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/simphony-remote/checkouts/stable/doc/source/developer.rst, line 17)

toctree references unknown document ‘api/remoteappmanager.webapi.admin.application’

System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/simphony-remote/checkouts/stable/doc/source/developer.rst, line 17)

toctree references unknown document ‘api/remoteappmanager.webapi.admin.container’

	remoteappmanager.application

	

	remoteappmanager.command_line_config

	

	remoteappmanager.file_config

	

	remoteappmanager.netutils

	

	remoteappmanager.traitlets

	Additional traitlets that we use in our application.

	remoteappmanager.user

	

	remoteappmanager.utils

	

	remoteappmanager.cli.remoteappdb.__main__

	Script to perform operations on the database of our application.

	remoteappmanager.cli.remoteapprest.__main__

	

	remoteappmanager.db.csv_db

	This module provides support for using CSV file as the database of the remoteappmanager.

	remoteappmanager.db.interfaces

	

	remoteappmanager.db.orm

	

	remoteappmanager.docker.async_docker_client

	

	remoteappmanager.docker.container

	

	remoteappmanager.docker.container_manager

	

	remoteappmanager.docker.image

	

	remoteappmanager.jupyterhub.auth

	

	remoteappmanager.jupyterhub.spawners

	

	remoteappmanager.handlers.base_handler

	

	remoteappmanager.handlers.user_home_handler

	

	remoteappmanager.logging.logging_mixin

	

	remoteappmanager.webapi.application

	

	remoteappmanager.webapi.container

	

	remoteappmanager.webapi.admin.application

	

	remoteappmanager.webapi.admin.container

	

	remoteappmanager.services.hub

	

	remoteappmanager.services.reverse_proxy

	

command_line_config

file_config

netutils

Functions

	wait_for_http_server_2xx(url[, timeout])

	Wait for an HTTP Server to respond at url and respond with a 2xx code.

	
remoteappmanager.netutils.wait_for_http_server_2xx(url, timeout=10)

	Wait for an HTTP Server to respond at url and respond with a 2xx code.

traitlets

Functions

	as_dict(traited_instance)

	Returns a dictionary from the traited class, with keys equal to trait names and values the corresponding values.

	set_traits_from_dict(traited_instance, d)

	Given a class with traitlets and a dictionary with keys corresponding to the traitlet names, set the traitlets to the associated dict values.

	
remoteappmanager.traitlets.as_dict(traited_instance)

	Returns a dictionary from the traited class, with keys
equal to trait names and values the corresponding values.

	
remoteappmanager.traitlets.set_traits_from_dict(traited_instance, d)

	Given a class with traitlets and a dictionary with keys corresponding
to the traitlet names, set the traitlets to the associated dict values.

Note: if a set operation fails, the appropriate traitlet exception is
raised. Traitlets that were already set won’t be rolled back.

user

utils

Functions

	deprecated(func)

	Decorator.

	mergedoc(function, other)

	Merge the docstring from the other function to the decorated function.

	one(elements)

	Returns True if only one element is not None, false otherwise

	parse_volume_string(volume_string)

	Parses a volume specification string SOURCE:TARGET:MODE into its components, or raises click.BadOptionUsage if not according to format.

	remove_quotes(s)

	Removes start/end quotes from a string, if needed.

	url_path_join(*pieces)

	Join components of url into a relative url path Use to prevent double slash when joining subpath.

	with_end_slash(url)

	Normalises a url to have an ending slash, and only one.

	without_end_slash(url)

	Makes sure there is no end slash at the end of a url.

	
remoteappmanager.utils.deprecated(func)

	Decorator. Marks a function/method as deprecated.

	
remoteappmanager.utils.mergedoc(function, other)

	Merge the docstring from the other function to the decorated function.

	
remoteappmanager.utils.one(elements)

	Returns True if only one element is not None, false otherwise

	
remoteappmanager.utils.parse_volume_string(volume_string)

	Parses a volume specification string SOURCE:TARGET:MODE into
its components, or raises click.BadOptionUsage if not according
to format.

	
remoteappmanager.utils.remove_quotes(s)

	Removes start/end quotes from a string, if needed.
If s is not a string, it is returned untouched.

	
remoteappmanager.utils.url_path_join(*pieces)

	Join components of url into a relative url path
Use to prevent double slash when joining subpath. This will leave the
initial and final / in place

Assume pieces do not contain protocol (e.g. http://)

	
remoteappmanager.utils.with_end_slash(url)

	Normalises a url to have an ending slash, and only one.

	
remoteappmanager.utils.without_end_slash(url)

	Makes sure there is no end slash at the end of a url.

__main__

Functions

	database(db_url)

	Retrieves the orm.Database object from the passed db url.

	get_docker_client()

	Returns docker.APIClient object using the local environment variables

	is_sqlitedb_url(db_url)

	Returns True if the url refers to a sqlite database

	main()

	

	normalise_to_url(url_or_path)

	Normalises a disk path to a sqlalchemy url

	print_error(error)

	Prints an error message to stderr

	sqlite_url_to_path(url)

	Converts a sqlalchemy sqlite url to the disk path.

	sqlitedb_present(db_url)

	Checks if the db url is present.

	
remoteappmanager.cli.remoteappdb.__main__.database(db_url)

	Retrieves the orm.Database object from the passed db url.

	Parameters

	db_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string containing a db sqlalchemy url.

	Returns

	

	Return type

	orm.Database instance.

	
remoteappmanager.cli.remoteappdb.__main__.get_docker_client()

	Returns docker.APIClient object using the local environment variables

	
remoteappmanager.cli.remoteappdb.__main__.is_sqlitedb_url(db_url)

	Returns True if the url refers to a sqlite database

	
remoteappmanager.cli.remoteappdb.__main__.main()

	

	
remoteappmanager.cli.remoteappdb.__main__.normalise_to_url(url_or_path)

	Normalises a disk path to a sqlalchemy url

	Parameters

	url_or_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – a sqlalchemy url or a disk path

	Returns

	A sqlalchemy url

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
remoteappmanager.cli.remoteappdb.__main__.print_error(error)

	Prints an error message to stderr

	
remoteappmanager.cli.remoteappdb.__main__.sqlite_url_to_path(url)

	Converts a sqlalchemy sqlite url to the disk path.

	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A “sqlite:///” path

	Returns

	The disk path.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
remoteappmanager.cli.remoteappdb.__main__.sqlitedb_present(db_url)

	Checks if the db url is present.
Remote urls are always assumed to be present, so this method
concerns mostly sqlite databases.

__main__

Functions

	main()

	

	
remoteappmanager.cli.remoteapprest.__main__.main()

	

csv_db

interfaces

orm

Functions

	accounting_for_user(session, user)

	Returns a list of Accounting objects, each containing an application and the associated policy that the specified orm user is allowed to run.

	detached_session(db)

	Creates a session where at the end, the objects retrieved are detached from the session itself

	transaction(session)

	handles a transaction in a session.

	
remoteappmanager.db.orm.accounting_for_user(session, user)

	Returns a list of Accounting objects, each containing
an application and the associated policy that the specified orm user is
allowed to run.
If the user is None, the default is to return an empty list.
The id is a unique string identifying the combination of
application and policy. It is not unique per user.

	Parameters

	
	session (Session) – The current session

	user (User or None [https://docs.python.org/3/library/constants.html#None]) – the orm User, or None.

	Returns

	

	Return type

	A list of Accounting objects

	
remoteappmanager.db.orm.detached_session(db)

	Creates a session where at the end, the objects retrieved
are detached from the session itself

	
remoteappmanager.db.orm.transaction(session)

	handles a transaction in a session.

async_docker_client

container

container_manager

Exceptions

	MultipleResultsFound

	Raised when we are asking for a specific container, but more than one result is found.

	OperationInProgress

	Exception raised when the operation for the requested image or container is already in progress.

	
class remoteappmanager.docker.container_manager.MultipleResultsFound

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Raised when we are asking for a specific container, but more than
one result is found.

	
class remoteappmanager.docker.container_manager.OperationInProgress

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Exception raised when the operation for the requested image or
container is already in progress.

image

auth

spawners

Functions

	escape(s)

	Trivial escaping wrapper for well established stuff.

	
remoteappmanager.jupyterhub.spawners.escape(s)

	Trivial escaping wrapper for well established stuff.
Works for containers, file names. Note that it is not destructive,
so it won’t generate collisions.

base_handler

user_home_handler

logging_mixin

Functions

	issue(self, message[, exc])

	Accepts a message that will be logged with an additional reference code for easy log lookup.

	
remoteappmanager.logging.logging_mixin.issue(self, message, exc=None)

	Accepts a message that will be logged with an additional reference
code for easy log lookup.

The identifier will be returned for inclusion in user-visible
error messages.

hub

reverse_proxy

Troubleshoot

A new user does not see the applications I am adding

You have to restart the user server. As a jupyterhub administrator, go to

https://your.jupyterhub.url/hub/admin

and restart the user server.

This problem will appear under this circumstance:
1. User who is not in the remoteappmanager db yet performs a login.
2. Admin adds User to remoteappmanager db, and grants him some applications.
3. User will not see the applications.

The reason is the following: when the user first performs the login, the
remoteappmanager subprocess is started. The authentication mechanism looks the
user up in the remoteappmanager database, does not find it, and therefore sets
account to None. This operation is never performed again, so the user remains
None even if later on it is added to the database. Only by restarting
remoteappmanager the lookup is performed again.

It is debatable if this behavior is a bug or not (after all, bash also won’t
alter your current enviroment if root changes /etc/bashrc, and you will have to
logout to get the new environment). Issue #305 debates this point.

I use the GitHub authenticator. A GitHub user has capitalisation in its username, but I see it as lowercase.

This is by design in both GitHub and JupyterHub. GitHub usernames are case insensitive, and case preserving.
JupyterHub authenticator always normalises the usernames to lowercase.

The database is not initalised properly

Each user’s server requires a database setup and readable by the local process on which the
remoteappmanager web application is started. The error message indicates that the database is
not readable (e.g. it does not exist). Please refer to further documentation
for details and options on setting up the database.

For more details on how the local process is managed, please refers to remoteappmanager.spawner.

Docker timeouts

If the application is unable to connect to docker and timeouts with the following message

Error while fetching server API version: HTTPSConnectionPool(host=’192.168.99.100’, port=2376):
Max retries exceeded with url: /version (Caused by
ConnectTimeoutError(<requests.packages.urllib3.connection.VerifiedHTTPSConnection object at 0x106299518>,
‘Connection to 192.168.99.100 timed out. (connect timeout=60)’)).

The likely problem is that your docker machine is not reachable. The most likely cause is that
you recently recreated your default docker machine, or the docker machine is no longer reachable.
Make sure that your docker environment (DOCKER_HOST environment variable) is compatible with the
docker machine current ip address (docker-machine ip). If not, reconfigure your docker machine
environment with eval $(docker-machine env).

Error when connecting to docker: Permission denied

Check if your /var/run/docker.sock is accessible and readable. The likely cause is
that your current user is not in the docker group. Fix this by running:

sudo addgroup your_username docker

and then logging out and in again.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 remoteappmanager	

 	
 	
 remoteappmanager.cli.remoteappdb.__main__	

 	
 	
 remoteappmanager.cli.remoteapprest.__main__	

 	
 	
 remoteappmanager.command_line_config	

 	
 	
 remoteappmanager.db.csv_db	

 	
 	
 remoteappmanager.db.interfaces	

 	
 	
 remoteappmanager.db.orm	

 	
 	
 remoteappmanager.docker.async_docker_client	

 	
 	
 remoteappmanager.docker.container	

 	
 	
 remoteappmanager.docker.container_manager	

 	
 	
 remoteappmanager.docker.image	

 	
 	
 remoteappmanager.file_config	

 	
 	
 remoteappmanager.handlers.base_handler	

 	
 	
 remoteappmanager.handlers.user_home_handler	

 	
 	
 remoteappmanager.jupyterhub.auth	

 	
 	
 remoteappmanager.jupyterhub.spawners	

 	
 	
 remoteappmanager.logging.logging_mixin	

 	
 	
 remoteappmanager.netutils	

 	
 	
 remoteappmanager.services.hub	

 	
 	
 remoteappmanager.services.reverse_proxy	

 	
 	
 remoteappmanager.traitlets	

 	
 	
 remoteappmanager.user	

 	
 	
 remoteappmanager.utils	

Index

 A
 | D
 | E
 | G
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	accounting_for_user() (in module remoteappmanager.db.orm)

 	
 	as_dict() (in module remoteappmanager.traitlets)

D

 	
 	database() (in module remoteappmanager.cli.remoteappdb.__main__)

 	
 	deprecated() (in module remoteappmanager.utils)

 	detached_session() (in module remoteappmanager.db.orm)

E

 	
 	escape() (in module remoteappmanager.jupyterhub.spawners)

G

 	
 	get_docker_client() (in module remoteappmanager.cli.remoteappdb.__main__)

I

 	
 	is_sqlitedb_url() (in module remoteappmanager.cli.remoteappdb.__main__)

 	
 	issue() (in module remoteappmanager.logging.logging_mixin)

M

 	
 	main() (in module remoteappmanager.cli.remoteappdb.__main__)

 	(in module remoteappmanager.cli.remoteapprest.__main__)

 	
 	mergedoc() (in module remoteappmanager.utils)

 	MultipleResultsFound (class in remoteappmanager.docker.container_manager)

N

 	
 	normalise_to_url() (in module remoteappmanager.cli.remoteappdb.__main__)

O

 	
 	one() (in module remoteappmanager.utils)

 	
 	OperationInProgress (class in remoteappmanager.docker.container_manager)

P

 	
 	parse_volume_string() (in module remoteappmanager.utils)

 	
 	print_error() (in module remoteappmanager.cli.remoteappdb.__main__)

R

 	
 	remoteappmanager.cli.remoteappdb.__main__ (module)

 	remoteappmanager.cli.remoteapprest.__main__ (module)

 	remoteappmanager.command_line_config (module)

 	remoteappmanager.db.csv_db (module)

 	remoteappmanager.db.interfaces (module)

 	remoteappmanager.db.orm (module)

 	remoteappmanager.docker.async_docker_client (module)

 	remoteappmanager.docker.container (module)

 	remoteappmanager.docker.container_manager (module)

 	remoteappmanager.docker.image (module)

 	remoteappmanager.file_config (module)

 	
 	remoteappmanager.handlers.base_handler (module)

 	remoteappmanager.handlers.user_home_handler (module)

 	remoteappmanager.jupyterhub.auth (module)

 	remoteappmanager.jupyterhub.spawners (module)

 	remoteappmanager.logging.logging_mixin (module)

 	remoteappmanager.netutils (module)

 	remoteappmanager.services.hub (module)

 	remoteappmanager.services.reverse_proxy (module)

 	remoteappmanager.traitlets (module)

 	remoteappmanager.user (module)

 	remoteappmanager.utils (module)

 	remove_quotes() (in module remoteappmanager.utils)

S

 	
 	set_traits_from_dict() (in module remoteappmanager.traitlets)

 	
 	sqlite_url_to_path() (in module remoteappmanager.cli.remoteappdb.__main__)

 	sqlitedb_present() (in module remoteappmanager.cli.remoteappdb.__main__)

T

 	
 	transaction() (in module remoteappmanager.db.orm)

U

 	
 	url_path_join() (in module remoteappmanager.utils)

W

 	
 	wait_for_http_server_2xx() (in module remoteappmanager.netutils)

 	
 	with_end_slash() (in module remoteappmanager.utils)

 	without_end_slash() (in module remoteappmanager.utils)

Docker CI for SimPhoNy-Remote

This module contains Docker files that can be used to test installations
for various platforms.

Please ensure that you are building from a clean repository, since all contents will be copied into the Docker
image and may affect the build. For example, if a venv is already present then this will prevent the
Python virtual environment inside the container from being set up correctly.

However, running S-R as a Docker container image is NOT fully supported for deployment, since image applications
will not be able to be run.

Building SimPhoNy-Remote as a Docker Image

It is also possible to build SimPhoNy-Remote as a Docker container image using a Dockerfile script
provided for either ubuntu or centos Linux OS:

docker build . --file Dockerfile-<linux os> -t simphony-remote

Alternatively, you can provide the following docker-compose command:

docker-compose build simphony-remote-<linux os>

Running SimPhoNy-Remote as a Docker Image

When running, S-R needs to be given a reference to the Docker daemon that contains the applications
(also Docker container images) required by the Hub session. Running Docker inside Docker is not recommended,
but there are a couple of approaches that can be used as a work around, such as
sharing volumes [https://docs.docker.com/storage/volumes] or performing a
bind mount [https://docs.docker.com/storage/bind-mounts].

We have successfully ran a S-R session using a Docker container image by sharing volumes with the following command:

docker run -it -v /var/run/docker.sock:/var/run/docker.sock -p 8000:8000 simphony-remote-<linux os> bash

This will allow a jupyterhub session with user login / management services to be initiated as normal. However, as
stated previously, any S-R applications will not be able to run.

Docker image specifications

Docker images compliant to the simphony-remote application define a protocol
through docker LABEL and environment variables.

Labels

Labels are defined with the prefix namespace:

eu.simphony-project.docker

The following labels are currently defined.
Their definition can be found in remoteappmanager.docker.docker_labels

	ui_name: the UI visible name of the image

	icon_128: a base64 encoded png image that will result as an icon

	description: a user-readable description of the image

	type: a string identifying the type of the container, depending on
the original base image (vncapp or webapp)

	env: subnamespace for accepted environment variables. See below.

The env is a subnamespace defining the environment variables the image internals
can understand. This does not mean that they are the only ones that will be
passed to the image.

The naming strategy works around the docker label restrictions [https://docs.docker.com/engine/userguide/labels-custom-metadata/#/label-keys-namespaces]
of having kebab case [http://c2.com/cgi/wiki?KebabCase] vs envvars that are
traditionally MACRO_CASE. Additionally, it allows new variables to be added
by layers without having to know the variables understood by the base layer.

The strategy is as follows: the name after the env will be converted to uppercase
and dashes converted to underscores. For example:

env.x11-width -> container accepts and understands envvar X11_WIDTH

the value of the label is currently unused, and should be left empty.

If your application uses variables with a different convention, or uses double underscores,
you will have to define an auxilliary variable and transfer the value in the image
startup scripts.

Currently reserved env keys:

	x11-width: for the VNC images, the X11 width

	x11-height: for the VNC images, the X11 height

	x11-depth: for the VNC images, the X11 depth (currently unused, fixed at 16)

	startupdata: this variable can be set to a file that will be loaded by an application
upon startup

Container Labels

When a container is started, the following labels will be added:

	url_id: unique identifier that ends up in the URL when the
user is redirected

	mapping_id: a unique key identifying the combination of image
and policy used to start the container.

	user: the user that started the container

Environment variables

The following environment variables are passed at container startup:

	JPY_USER: the username used to login to the Jupyterhub frontend.
Can be an email address, or anything else your authenticator accepts.

	JPY_BASE_USER_URL: The base URL _path_ where the user has its service.

	USER: A unix-likable username to create the container user.

	URL_ID: a unique key assigned to the container that will end up in
the user-exposed URL to reach the container.

If the image accepts additional envvars (through the env labels mechanism outlined above)
these variables will be passed through the configurables mechanism: special variables
are recognized and exposed to the user as a configurable UI, then passed to the container
at startup. See the reserved env labels for details.

The database is not initalised properly

Each user’s server requires a database setup and readable by the local process on which the
remoteappmanager web application is started. The error message indicates that the database is
not readable (e.g. it does not exist). Please refer to further documentation
for details and options on setting up the database.

For more details on how the local process is managed, please refers to remoteappmanager.spawner.

Docker timeouts

If the application is unable to connect to docker and timeouts with the following message

Error while fetching server API version: HTTPSConnectionPool(host=’192.168.99.100’, port=2376):
Max retries exceeded with url: /version (Caused by
ConnectTimeoutError(<requests.packages.urllib3.connection.VerifiedHTTPSConnection object at 0x106299518>,
‘Connection to 192.168.99.100 timed out. (connect timeout=60)’)).

The likely problem is that your docker machine is not reachable. The most likely cause is that
you recently recreated your default docker machine, or the docker machine is no longer reachable.
Make sure that your docker environment (DOCKER_HOST environment variable) is compatible with the
docker machine current ip address (docker-machine ip). If not, reconfigure your docker machine
environment with eval $(docker-machine env).

Error when connecting to docker: Permission denied

Check if your /var/run/docker.sock is accessible and readable. The likely cause is
that your current user is not in the docker group. Fix this by running:

sudo addgroup your_username docker

and then logging out and in again.

A new user does not see the applications I am adding

You have to restart the user server. As a jupyterhub administrator, go to

https://your.jupyterhub.url/hub/admin

and restart the user server.

This problem will appear under this circumstance:
1. User who is not in the remoteappmanager db yet performs a login.
2. Admin adds User to remoteappmanager db, and grants him some applications.
3. User will not see the applications.

The reason is the following: when the user first performs the login, the
remoteappmanager subprocess is started. The authentication mechanism looks the
user up in the remoteappmanager database, does not find it, and therefore sets
account to None. This operation is never performed again, so the user remains
None even if later on it is added to the database. Only by restarting
remoteappmanager the lookup is performed again.

It is debatable if this behavior is a bug or not (after all, bash also won’t
alter your current enviroment if root changes /etc/bashrc, and you will have to
logout to get the new environment). Issue #305 debates this point.

I use the GitHub authenticator. A GitHub user has capitalisation in its username, but I see it as lowercase.

This is by design in both GitHub and JupyterHub. GitHub usernames are case insensitive, and case preserving.
JupyterHub authenticator always normalises the usernames to lowercase.

 _images/components.png
Jupyter Hub

1

n (one per usel)

Single user
manager

(=]

Simphany
container

(=]

_images/usecases.png
remote_app

authenticator

s

seientist

I Start an application session l

Upload an application docker container

Build compatible docker container

_images/base_workflow.png
Jupyter Hub process

Reverse Jupyter PAM Docker
Proxy Hub Authenticator Engine
seleqtst
! t
login reque .
authenticated]
User Session
Manager
retrizve image list
user page port
map user yage
start contaiher 5
tart image
}ﬂ, simphany
Container
| < map contajner page port
Scienfist | peyerse Jupyter PAM User Session Docker Simphany
Proxy Hub Authenticator ||| Manager Engine Container

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Simphony-remote

 		
 Deployment

 		
 Single Machine

 		
 Setup docker containers

 		
 Setup Database Accounting

 		
 Start JupyterHub

 		
 Using Nginx Reverse Proxy

 		
 Running as a Service

 		
 Configuration

 		
 Configure the spawner

 		
 Configure the authenticator and the admin user

 		
 Configure the remoteappmanager

 		
 Administration

 		
 Utilities

 		
 Remoteappdb

 		
 Remoteapprest

 		
 Design

 		
 Components

 		
 Usecases

 		
 Developer documentation

 		
 RemoteAppManager

 		
 Docker image specifications

 		
 Docker CI for SimPhoNy-Remote

 		
 Building SimPhoNy-Remote as a Docker Image

 		
 Running SimPhoNy-Remote as a Docker Image

 		
 API reference

 		
 command_line_config

 		
 file_config

 		
 netutils

 		
 traitlets

 		
 user

 		
 utils

 		
 __main__

 		
 __main__

 		
 csv_db

 		
 interfaces

 		
 orm

 		
 async_docker_client

 		
 container

 		
 container_manager

 		
 image

 		
 auth

 		
 spawners

 		
 base_handler

 		
 user_home_handler

 		
 logging_mixin

 		
 hub

 		
 reverse_proxy

 		
 Troubleshoot

 		
 A new user does not see the applications I am adding

 		
 I use the GitHub authenticator. A GitHub user has capitalisation in its username, but I see it as lowercase.

 		
 The database is not initalised properly

 		
 Docker timeouts

 		
 Error when connecting to docker: Permission denied

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/simphony_logo.png
£
SimPhoNy

